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ABSTRACT 1 
We present a methodology to use a time-expanded graph for the evaluation of betweenness 2 
centrality, and the general concept of importance. We will also apply social equity concepts to 3 
the importance analysis. The time-expanded graph allows for an accurate consideration of 4 
transfers, and low frequency transit routes. In a case study involving the City of Toronto, we 5 
developed a population weighted betweenness centrality measure where the weight is the number 6 
of riders travelling from an origin to a destination, belonging to a certain group, enabling us to 7 
examine transit equity implications. Through our analysis, we find that equity-seeking groups, 8 
such as racialized users, recent immigrants, and low-income users, are more concentrated on 9 
fewer nodes and edges than the general population, and as such they will be disproportionately 10 
affected if those hubs are disrupted. We also find equity-seeking riders are more likely to be 11 
concentrated on frequent bus routes, rather than Toronto’s streetcar or subway network. 12 
  13 
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INTRODUCTION 1 
In recent years, the transportation literature has dedicated more attention towards the topic of 2 
transportation equity as society has become more cognizant of the struggles that the most 3 
vulnerable users experience in their daily lives. In contrast to the notion of equality, equity 4 
suggests that the most vulnerable members of society should be given better transportation 5 
opportunities than the general population. The COVID-19 pandemic has amplified the need of 6 
addressing transit equity issues, as those who are racialized, have lower incomes, and lack access 7 
to a vehicle, rely heavily on transit through the pandemic and will be the first ones to return to 8 
transit during the recovery (1). 9 

Previous equity analysis in the public transit context has focused traditionally on the 10 
concept of accessibility, which represents the number of opportunities reachable from an origin 11 
within a time, and possibly cost, budget. A few efforts have recently focused on the interplay 12 
between equity and network structure (2–5), and bus reliability (6,7), offering useful insights and 13 
showing much promise. This study is an extension to this line of research. 14 

Service reliability remains a key consideration in the attractiveness of transit (8). It refers 15 
to the ability of transit service to remain consistent in the face of recurrent perturbations present 16 
in the operating environment (for example due to interactions with the general traffic or surge in 17 
transit demand), and it is often measured in terms of on-time performance of individual routes. In 18 
contrast to recurrent perturbations, service disruptions in emergency scenarios occur less 19 
frequently but have far more severe and prolonged impact on service, resulting in the temporary 20 
loss a user’s primary path, with no competitive paths available for use alternatively. This concept 21 
is often described as vulnerability or generally resiliency (9).  22 

Previous research on transit vulnerability and resiliency has primarily focused on metro 23 
networks (9,10), either by excluding surface transit in their graph models, or assuming surface 24 
transit can be represented much in the same way as metro networks. This ignores the role and 25 
uniqueness surface transit has in transit networks. In most transit agencies, the bus network 26 
contains a greater share of ridership than the metro network (11), and many of those routes do 27 
not operate at high frequencies throughout the day.  28 

We present a time-expanded graph approach to represent a multimodal transit network 29 
for graph analysis. This method presents a realistic representation of transfers while reducing 30 
graph size. It also sufficiently captures the role headways have on the network. We also adapt 31 
betweenness centrality to consider origin-destination flows and apply this measure across 32 
different equity-seeking groups. Through this method, we conduct an equity analysis on the 33 
importance of nodes and edges, and whether equity-seeking groups are more concentrated 34 
spatially in their travel patterns than the general population. 35 
 36 
LITERATURE REVIEW 37 
 38 
Transit Equity 39 
For society’s most vulnerable users, mobility provides a key avenue to improve their daily lives. 40 
Public transit has an important role in providing mobility since it increases the number 41 
employment opportunities they can access over simply walking (12). Transit also has a role in 42 
reducing social exclusion since it allows equity-seeking riders to access essential activities such 43 
as groceries, education, health clinics, recreation, and entertainment (13).  44 

The idea of equity, which may be labeled more precisely as vertical equity, is different 45 
from equality, which might also be labeled as horizontal equity. Equality is premised on the basis 46 
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that all parties should receive the same level of opportunities, while equity is rooted in the basis 1 
that to reach the same outcome, different levels of opportunity have to be provided (12,14). In 2 
the public transit context, this might manifest as providing more service hours and more reliable 3 
services to neighbourhoods populated by equity-seeking riders, such as low-income or racialized 4 
residents. Some studies, particularly those involving a Lorenz curve or Gini coefficient to 5 
analyze the equality of service levels (4,14,15), conflate equity with equality, although equal 6 
service is not necessarily equitable.  7 

Besides Lorenz curves, there have been many transit equity studies that analyze 8 
accessibility, typically measuring access to opportunity (jobs, essential services) within a specific 9 
travel time window. Many studies aggregate neighbourhood-level results into quantiles defined 10 
by social equity indicator quantiles (13,16–19), such as household income, proportion of recent 11 
immigrants, or a composite index of many indicators. Other accessibility studies present results 12 
disaggregated each equity-seeking group of interest such as comparing results black transit riders 13 
versus white riders (20).  14 

Accessibility is not the sole consideration for an equitable transit system. Reliability is 15 
also important since equity-seeking users can face higher penalties for being late to their jobs 16 
than those who have more stable employment, and adapting to unreliability might decrease 17 
access to opportunities (21). Some studies have attempted to address the role reliability has in 18 
creating an equitable network; one study analyzed on time performance among routes served by 19 
disadvantaged and advantaged users (6). Another analyzed the equitability of the response to 20 
subway delays and subway disruptions (7). However social equity studies on reliability remain 21 
rare. 22 
 23 
Vulnerability in Public Transit  24 
Reliability is very important to the overall transit experience of riders, as unpredictable travel 25 
times can lead to riders to add an unnecessary buffer (22) to their trips, which would lower their 26 
overall access to potential opportunity. Reliability typically captures variation in transit level of 27 
service at the trip level, and involves perturbations and variations of travel time due to common 28 
events; disruption is to reliability but different in that the events causing disruption are less 29 
frequent and can lead to shutdowns in service ranging from multiple hours to multiple weeks, 30 
depending on the severity of disruption (23). Vulnerability and importance are concepts that 31 
measure a network’s susceptibility to disruption. A vulnerable network tends to have disruptions 32 
in service that will last for longer durations than an unreliable network (23), and will cause 33 
significant reductions in network serviceability (24). Similar to vulnerability is the concept of 34 
importance. Importance is defined as how important a transit route or stop is to the entire 35 
network, and the level of disruption it will cause if negatively affected (25,26).  36 
 37 
Graph Theory Approaches to Vulnerability Analysis 38 
Graph theory offers the most common approach to the analysis of network vulnerability or 39 
importance. The birth of Graph theory is attributed to Euler while addressing “The Seven 40 
Bridges of Konigsberg” problem in the 18th century. Graph theoretic methods represent 41 
intersections, stations, or bus stops as nodes, and sections of roads, rail lines, streetcar tracks, or 42 
bus routes as edges (10). Some graph analyses make the distinction between a P-space, where 43 
nodes directly connect with all other nodes and the edge cost is the travel time between 44 
individual nodes, and L-space, where nodes are only connected if they are adjacent to another on 45 
a transit route in the transit network (27,28). There is also the distinction of planar, where edges 46 
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must intersect at nodes, and non-planar, where the graph is three-dimensional and edges can 1 
cross over other edges without intersecting (10).  2 

A common measure to analyzing vulnerability and importance of a node or edge is 3 
betweenness centrality (5,29–31), which can be defined by the following equation(32). 4 
 5 
𝑔(𝑖) = Σ!"#

$!"(&)
$!"

	          (1) 6 
 7 
where 8 
 𝑛!# = number of shortest paths between an origin o, and destination d 9 
 𝑛!#(𝑖) = number of shortest paths between an origin o, and destination d, crossing node i 10 
 𝑔(𝑖) = betweenness centrality 11 
 12 
Betweenness centrality can also be normalized by the maximum betweenness centrality for an 13 
equivalent network with the same amount of nodes (33). This can be expressed as the following 14 
for a directed graph. 15 
 16 
𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑	𝑔(𝑖) = ((&)

()*+)()*,)
        (2) 17 

 18 
where 19 
 N = number of nodes in the graph 20 
 21 

A higher betweenness centrality for a specific node or edge would indicate that such node 22 
or edge has greater importance to the network (32), and its removal would make the network 23 
more vulnerable. Other types of centrality measures exist, such as eigenvector centrality, degree 24 
centrality and closeness centrality, which uses other variables instead of travel time and shortest 25 
paths (34).  26 
 27 
Graph Theory Approaches in Public Transit 28 
One weakness of the traditional graph approach to analyzing a public transit network is the 29 
assumption that the nodes and edges, representing stops and transit route sections, exist at the 30 
same service level at all times. While this may be a reasonable assumption to make for high 31 
frequency services such as metro networks, it overestimates service in outlying areas which are 32 
typically covered by low-frequency surface transit. In contrast to classifying graphs by P-space 33 
or L-space, Whited developed an alternative method to classifying graph networks in the transit 34 
context using the labels of route-map, trip-map, and time-expanded (31).  35 

Route-map graphs represent each route as a set of edges and stops as nodes, similar to an 36 
L-space representation, while a trip-map graph plots each trip as a set of parallel edges, usually 37 
in a multi graph (31). A time-expanded graph transforms a temporal graph into a static graph by 38 
producing a copy of each node at each instance of time; edges are then drawn between each 39 
time-node combination at time instances whenever the edges exist (35). In the public transit 40 
context, this would mean that edges connecting stops would only exist when the timetable 41 
indicates a bus or train is travelling between the stops. This representation allows a static graph 42 
to take into consideration the aspect of headways and frequency of service. 43 

Various authors have attempted to integrate headways into graph analysis. For an 44 
analysis of the public transit network of Vancouver, Qunitero-Cano incorporated headways into 45 
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a route-map graph by assigning a frequency factor into each edge of the graph (36). The factor 1 
would then be used as a weight in the computation of common graph measures such as 2 
complexity, and connectivity. Maduako used a different approach in creating up to 165 daily 3 
snapshots of the transit network in Moncton, to account for the changes in the transit network for 4 
different departure times (37). Both Whited and Fortin implemented the time-expanded graph for 5 
an analysis into the networks of Edmonton, and Chambly, Quebec, respectively (31,38). 6 
However, the use of time-expanded graphs in public transit contexts remains sparse. Transit 7 
networks that have many low-frequency routes, such as buses or commuter rail, stand to benefit 8 
the most from using a time-expanded approach. Previous applications of graph theory focus 9 
mainly on metro, light rail and bus rapid transit networks (9,10), which may be why time-10 
expanded graphs were not common or needed. However, for graph analysis specifically 11 
involving bus networks, some studies represent bus networks as a L-space network similar to a 12 
route-map graph (34,39,40), and avoid considering the impacts of headways. 13 
 14 
Project Novelty 15 
With previous applications of graph theory in for vulnerability focusing on representing the 16 
network as a static graph, we see an opportunity to address these. The time-expanded model will 17 
consider the headways of individual transit routes, and we can accurately model transfers so that 18 
low frequency transit routes are less desirable to transfer onto, much like the path finding 19 
behaviour of passengers.  20 
 We also see a lack of integration of social equity into the concepts of importance. These 21 
groups face the greatest barriers to economic advancement. We will use the time-expanded graph 22 
to apply a betweenness centrality analysis to determine whether equity-seeking riders are more 23 
vulnerable to disruptions than the general population. 24 
 This is important because many equity-seeking populations are reliant on local buses, and 25 
low frequency routes as a last mile solution to reach rapid transit station, and tend to live further 26 
away from the subway network (41). By not considering headways, previous studies may assume 27 
those bus routes are more resilient and less vulnerable than reality. 28 
 29 
  30 
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METHODOLOGY 1 
 2 
The study requires census data, GTFS feeds, an OD travel survey, and road network GIS files as 3 
inputs. Census data and the travel survey were used to synthesize populations, while the GTFS 4 
feed and GIS data were used to build the time-expanded graph. These processes are shown in 5 
Figure 1. We chose to apply this analysis in a case study involving the City of Toronto. 6 
 7 
 8 

 9 
 10 
Figure 1: Simplified flowchart of the methodology for the analysis 11 
 12 
Population Weighted Betweenness Centrality 13 
As described previously, betweenness centrality is a measure of importance that measures the 14 
proportion of shortest paths crossing a node or edge. However, a criticism is that the measure 15 
fails to take into account the usage of a stop or route (25); for example while two stops might 16 
have the same betweenness centrality value, the stop with higher ridership is more important and 17 
will increase vulnerable if disrupted. Therefore, we introduce a population weighted betweenness 18 
centrality (PWBC) measure, shown in equation 3, where the measure is weighted by the number 19 
of trips from a specific origin to a specific destination, over the total number of trips.  20 
 21 

𝑔-!-(𝑖) =
.!#"

$!"%!"(')
)!"$!"%!"

()*,)()*+)
	         (3) 22 

 23 
where  24 
 𝑥!# = number of trips using transit from origin o to destination d 25 
 𝑛!# = number of shortest paths between an origin o, and destination d 26 
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 𝑛!#(𝑖) = number of shortest paths between an origin o and destination d, crossing node i 1 
N = number of unique intersections or subway stations in the graph 2 
𝑔-!-(𝑖) = population weighted betweenness centrality 3 

 4 
The population weight can alternatively be defined by equity-seeking group, such as the total 5 
number of trips made by recent immigrants, instead of the total number of trips. This method 6 
allows us to find nodes or edges specifically important to each equity-seeking group and explore 7 
how this differs from the general population. 8 

While many graph packages have algorithms to calculate betweenness centrality, we did 9 
not find a suitable package that can calculate betweenness centrality in a time expanded graph. 10 
Instead, we calculated the betweenness centrality from computing all possible Dijkstra shortest 11 
paths between an origin and destination. Later, we will discuss how the time-expanded graph 12 
will have multiple nodes located at the same intersection, but to take this fact into account, we 13 
simplified the shortest paths to be a list of all unique intersections/subway stations and route 14 
segments visited, instead of a list of all nodes or edges visited.  15 
 16 
Defining Equity-seeking Groups 17 
Our method requires an OD travel survey. The Greater Golden Horseshoe region, encompassing 18 
the City of Toronto, conducts the Transportation Tomorrow Survey (TTS) at a 5% sample size, 19 
with the most recent iteration being conducted in 2016 (42). One resident per household is asked 20 
about the details of all trips made by members of the household on the previous weekday. 21 
Respondents also provide other demographic data, such as the household size, age and gender of 22 
each household member, household income and the number of residents in the household. 23 
However, other demographic data, such as ethnicity or immigration status, was not collected in 24 
the survey. Results were aggregated to the nearest TAZ and the most recent survey took place in 25 
2016.  26 

Based on the guidance of the TCRP Research Report 214 (43) and previous literature, we 27 
chose to use the following equity-seeking groups for the analysis: racialized residents (composed 28 
of visible minorities and indigenous residents), recent immigrants landing between 2011 and 29 
2016), residents who have no proficiency any official languages, low-income residents, and 30 
carless households. We also specifically analyzed black residents, which would be a subset of 31 
racialized residents. The number of residents in carless households and number of low-income 32 
residents making trips can be pulled directly from the TTS, while Census data was used to 33 
determine the populations of the other groups. 34 

To determine the number, origin, and destination of trips made by other equity-seeking 35 
groups, publicly available census profiles was used. These profiles only include the number of 36 
men and women for each census question, such as the number of recent immigrant men and 37 
number of recent immigrant women.  38 

TAZs generally have populations ranging between 5,000 to 15,000, while the smaller 39 
census dissemination area (CDA) has populations ranging between 0 to 2,000. Since TAZs do 40 
not perfectly match up with CDAs, we assumed that population density and composition was 41 
uniform across the entire CDA. We then calculated the population of each equity-seeking group 42 
in each TAZ by taking a weighted average of the population for each CDA inside the TAZ. This 43 
population can then be used to create a proportion of the total population that falls into each 44 
group we defined for the analysis. We then used the number of males, females, and their 45 
household locations to match the TTS and census data to estimate the number of transit trips 46 
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made by each equity group from an origin zone to a destination zone. The resulting numbers of 1 
trips (Figure 2) were then used to weight the betweenness centrality to create the PWBC 2 
measure.  3 

This approach ensures that the analysis takes into consideration equity-seeking riders 4 
who use transit from origins and/or destinations outside their household location, such as non-5 
home based trips (44). While an effort was made to estimate the number of indigenous riders in 6 
the analysis, their low number disallowed their consideration as a separate group in the analysis. 7 
 8 

 9 
Figure 2: Estimated number of transit trips made by each equity-seeking group for each 10 
departure hour 11 
 12 
Matching Stops to Intersections 13 
GTFS files were required for the location of stops, and transit timetable. For our case study, the 14 
October 2016 GTFS feed for the Toronto Transit Commission was used as the basis to build the 15 
time-expanded graph. To reduce the size of the graph and simplify the paths that involve a 16 
transfer from one route to another, stops were matched to either intersections or subway stations. 17 
The intersections or stations were used as the graph nodes instead of individual bus stops. This 18 
process eliminates the need to build walking edges between stops for transfers. Only city defined 19 
“Major Intersections” and “Minor Intersections” were used for matching. As a result, we did not 20 
include mid-block bus stops in the graph, which accounted for a very small proportion of the 21 
roughly 10,000 stops in Toronto.  22 

To match a stop to an intersection, the stop must be roughly within 75m to 200m of an 23 
intersection or subway stop, depending on the type of intersection, subway station, or streetcar 24 
loop. Many nearside and farside stops were within this range, but some manual adjustment was 25 
done on some intersections to ensure that all stops were appropriately assigned to an intersection 26 
or subway station (Figure 3). Only intersections that had at least one stop assigned to it, along 27 
with all subway stations, were used to build the graph.  28 
 29 
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Figure 3: Examples of matching stops to stations (left), intersections (right), and manual 1 
adjustments for the matching (right). Bus stops are represented as dots. 2 
 3 
Graph Build Procedure 4 
For the time-expanded graph, all edges were directed. Intersections and stations were added as 5 
nodes to the graph, and edges, representing route segments from the GTFS, were then drawn 6 
between the intersections. In cases where multiple stops of the same route are assigned to the 7 
same intersection or station, the stop located the closest to intersection or station was used as the 8 
representative stop for edge travel times. Other nodes that were added were TAZ centroids, 9 
representing the set of origins and destinations.  10 

We made a distinction between index nodes, and route specific nodes, both of which are 11 
located at the same intersection or station and physical space. Edges that represent transit route 12 
segments connect route specific nodes to other route specific nodes of the same route, and the 13 
cost was based on the travel times found in the GTFS. Each route specific node connects to the 14 
index node for that intersection via boarding and alighting edges, at a cost of 2 minutes. This 15 
simulates the transfer time transit users need to walk across an intersection, or within a subway 16 
station and sets a minimum transfer time of 4 minutes. This also reduces computation overhead, 17 
since it adds a cost to waiting, and reduces the number of possible shortest paths, especially for 18 
low frequency routes. 4 minutes was also the time used by other transit routing services, such as 19 
Google Maps (45).   20 

That index node of a given intersection also connects to TAZ centroids within 30 minutes 21 
walking distance, and the cost for that edge was the walk time. To simulate waiting and transfers, 22 
the index connects to another index node at the same intersection one minute in the future.  23 

One minute was chosen as temporal resolution of the graph as smaller time increments 24 
would increase computation and memory requirements. All travel times were rounded to the 25 
nearest minute for the route specific edges. 26 
 27 
 28 
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 1 
 2 
Figure 4: Example of a shortest path involving a transfer at intersection 1. 3 
 4 

In the simplified example seen in Figure 4, there is a ten minute transfer at intersection 1 5 
between route A, which has a five minute headway, and route B, which has a ten minute 6 
headway. The transfer is composed of one alighting edge representing two minutes, one boarding 7 
edge representing two minutes, and six waiting links representing six minutes. While route B 8 
services the intersection at 7:12, this would not be a feasible transfer because there would not be 9 
enough time to alight, and then board the connecting bus. This is represented in the directed 10 
graph by the fact there would be no series of edges connecting the route A arrival at 7:10, and the 11 
route B departure at 7:12; instead, the 7:20 departure is chosen for the shortest path.  12 
 13 
Betweenness Centrality Computation 14 
We analyzed results for six periods (Figure 5), with six departure times inside each period. These 15 
departure times were all inside the first hour of each defined period, defined as the departure 16 
hour. On routes with very long headways, the shortest path and shortest path length can vary 17 
significantly depending on the departure time chosen, which can significantly affect the analysis 18 
(46). Shortest paths were calculated at six random times in 10-minute blocks within the departure 19 
hour instead of a single time much like the process used by Stępniak (46); as an example, for the 20 
AM period, shortest paths and betweenness centrality were calculated at 7:02, 7:18, 7:25, 7:30, 21 
7:49, 7:56. This randomization was done for all other periods. The graph was built for five hours 22 
after the start of the departure hour, to ensure that as many origin-destination pair returns a 23 
shortest path. This meant for an intersection serviced by 1 route at a 10 minute headway in each 24 
direction would roughly have 360 nodes representing it, representing 300 minutes’ worth of 25 
nodes for the index node, and 30 nodes representing each instance a bus arrives at the 26 
intersection, in each direction. 27 
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 1 

 2 
Figure 5: Departure hour and graph duration for each period 3 
 4 
RESULTS 5 
 6 
Toronto Case Study 7 
As mentioned previously, we will apply our methodology to the City of Toronto. The Toronto 8 
Transit Commission (TTC) is Canada’s largest transit system by daily ridership (11), and second 9 
busiest among systems in Canada and the United States, behind only the MTA in New York 10 
City. The TTC provides transit service on buses, streetcars, exclusive right-of-way streetcars, and 11 
subways. Toronto’s high frequency trunk bus routes, termed the 10-minute network by the TTC 12 
due to the fact they run at all day 10-minute headways except overnight, roughly operate on a 13 
grid that connects to the city’s subway lines, and many of the 10-minute network routes run 14 
overnight as part of the Blue Night network. The city’s subway network does not run overnight, 15 
but it is replaced by buses in the Blue Night network. The city’s bus and streetcar ridership 16 
constitute 64% of the daily ridership, with the subway making up the rest (11). 17 
 18 
Variability in Betweenness Centrality 19 
To first verify the hypothesis that the PWBC varies by departure time, we took the coefficient of 20 
variation of the six calculated PWBC values for each node, weighted by the total number of 21 
transit trips in Toronto for each period. This analysis was done for all six periods. The coefficient 22 
of variation is defined as the standard deviation of the PWBC over the mean PWBC for a node. 23 
This measure was selected as it was normalized to the mean and can thus be aggregated with the 24 
results for other nodes. 25 
 26 
𝐶𝑉& =

/
0
∗ 100%          (4) 27 

 28 
where 29 
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 𝜎 = Standard deviation of the six betweenness centralities within each period 1 
 𝜇 = Mean betweenness centrality among the six departure times within each period 2 
 𝐶𝑉& = Coefficient of variation for node i 3 
 4 

The coefficient of variations was then plotted as a histogram for each period (Figure 6). 5 
We also categorized each node into 1 of 5 categories; inner subway station for stations located in 6 
the pre-1997 borders of Toronto, outer subway stations for other stations, streetcar for stops that 7 
are served by a streetcar route, frequent bus for stops served by a 10-minute network bus route 8 
and not served by a streetcar route or subway line, and bus for stops not served by streetcar, 9 
subway, or frequent bus routes. We plotted the coefficient of variations as box plots 10 
disaggregated by both the time period, and the category of node (Figure 6).  11 
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 1 
Figure 6: Boxplot and histogram for the coefficient of variation of betweenness centrality for 2 
each period. We did not disaggregate by transit mode for the early morning period since the 3 
subway does not operate during that departure hour. 4 
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From the results, many nodes had coefficient of variations over 100%, and all periods had 1 
a mean coefficient of variation above 80%. In a few nodes, the coefficient of variation had values 2 
close to 400%, showing very high variation in how important an intersection is to the transit 3 
network. 4 

However, this result was not the same across modes. The coefficient of variation is 5 
relatively stable and low for both inner and outer subway stations. Outer stations have a slightly 6 
higher coefficient of variation because of lower frequencies on Lines 3 and 4 of the subway, and 7 
feeder bus routes connecting at the suburban stations. For the other three categories, the 8 
coefficient of variation is noticeably higher, indicating that the lower frequency increases the 9 
variability in the results. Non-frequent bus service had the highest variability since those routes 10 
had the longest headways, while downtown streetcar routes, which generally have higher 11 
frequencies, had lower variation.  12 

What was surprising is the degree of variation, with the standard deviation consistently 13 
being above the mean PWBC. This analysis shows the risks at choosing a single departure. This 14 
is true even for frequent bus and frequent streetcar routes. Finally, this analysis shows the basis 15 
for choosing a time-expanded graph over an L-space graph or a route map graph, as the headway 16 
dynamics would not be captured in those graphs, as it would assume that shortest paths involving 17 
surface transit routes would always exist. 18 
 19 
Entropy of PWBC by Group 20 
Once we verified that averages of multiple departure times must be taken, we took the average of 21 
the six departure times for each period. We then weighted the average betweenness centrality by 22 
the number of trips made by each equity-seeking group. We calculated the entropy of the PWBC, 23 
where the entropy is defined as 24 
 25 
𝐸-!- = Σ& 	𝑔-!-(𝚤)<<<<<<<<< ∗ ln	(𝑔-!-(𝚤)<<<<<<<<<)        (5) 26 
 27 
where  28 

𝑔-!-(𝚤)<<<<<<<<< = Mean of the PWBC for node i, among six departure times within each of the 29 
five periods 30 
𝐸-!-	= Entropy of PWBC 31 

 32 
The entropy would indicate the level of diversity in the PWBC; a higher value would mean a 33 
higher number of the specific equity-seeking transit users are concentrated on a few sets of bus 34 
stops or stations. 35 
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 1 
Figure 7: PWBC entropy measure by departure hour and group 2 
 3 

For nearly all equity-seeking groups except carless households (Figure 7), the entropy 4 
was higher than the general population. This indicates that riders belonging to those equity-5 
seeking groups were more concentrated onto specific routes, key bus stops, or subway station. 6 
Because those users are less likely to be equally distributed across the network, in the event a 7 
disruption occurs that disables those important nodes, they would be more vulnerable to 8 
disruption. The difference between the equity groups and the general population are greater in 9 
the evening periods compared to other periods. Of the equity-seeking groups, black transit users 10 
experience higher entropy, while carless households have consistently the lowest entropy. The 11 
entropy for the early morning period is higher than other time periods, which shows how the 12 
reduced overnight bus network concentrates potential trips onto a smaller set of routes and stops. 13 
 14 
  15 
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Mean of 95th Percentile PWBC Nodes by Group 1 
 2 

 3 
Figure 8: Mean PWBC measure by departure hour and group for nodes above the 95th percentile 4 
 5 

For each equity group, we also computed the mean of PWBC values above the 95th 6 
percentile (Figure 8). The 95th percentile was independently calculated for each equity-seeking 7 
group. Since a high PWBC for a stop or station would indicate many trips and shortest path use 8 
this stop or station, this measure is intended to capture how critical the hubs are to each equity-9 
seeking group. A 95th percentile was chosen to ensure that only important nodes were used for 10 
the mean, while ensuring that the chosen nodes were not entirely composed of subway stations. 11 
This typically resulted in a set of 50-200 nodes above the 95th percentile, depending on the time 12 
of day. Except for the early morning period, all but 3 subway stations along Lines 1 and 2 were 13 
above the 95th percentile for all equity-seeking groups. 14 

The mean of the nodes above 95th percentile tells a similar story to the entropy measure. 15 
For nearly all equity-seeking groups and periods, the means are slightly higher than the general 16 
population. This reinforces the fact that equity-seeking riders are more likely to be concentrated 17 
onto a set of small stations or stops. The smaller difference for the means compared to the 18 
entropy measure may indicate that the PWBC distribution is heavily skewed and results in a few 19 
stops having large values. 20 

Carless households remain the most distributed while black transit users are among the 21 
most concentrated for most time periods, however, this changes for the early morning period. 22 
This might indicate that carless household trips originate and end in a smaller geographical area; 23 
the number of nodes used by carless households in that period is small, but each node has a 24 
higher PWBC value, which explains why carless households have a high mean but low entropy 25 
for the early morning period. 26 
  27 
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PWBC by Group and Transit Mode 1 
 2 

 3 
Figure 9: Composition of edges that are above the 95th percentile 4 
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Finally, we analyzed the composition of transit modes for the most critical edges/segments 1 
(Figure 9). Again, we limited the edges above 95th percentile of PWBC for each period and 2 
equity-seeking group combination. The aim was to find the transit modes that constituted the 3 
most important edges for each equity-seeking group. The early morning period was again 4 
excluded since the subway was not in operation over part of the period.  5 

We found equity-seeking groups had a greater proportion of frequent bus edges for all 6 
times of day, except for carless households. Of the equity groups, black transit users consistently 7 
had the highest proportion for frequent buses. For bus routes, visible minorities and recent 8 
immigrants had higher proportions than the general populations for the morning peak and 9 
afternoon peak periods, but other equity groups had lower proportions than the general 10 
population. For the mid-day and evening periods, these edges make up a higher proportion for all 11 
equity groups. This would indicate that bus routes are more important for these equity-seeking 12 
groups, and they are more vulnerable to disruptions affecting frequent and non-frequent bus 13 
routes. 14 

The general population and carless households have a higher proportion of streetcar 15 
edges. This may indicate that both groups are more likely to live or work near the downtown 16 
core than other equity group. Disruptions affecting the streetcar network would have a 17 
disproportionate impact on the general population and carless households. The high proportion 18 
for users who have no knowledge of English or French in the evening period may be because the 19 
downtown neighbourhoods have a higher proportion of population who have no knowledge of 20 
English compared to the Toronto average. They may also be more likely to have non-standard 21 
work hours as well. 22 

The subway network does not have any major differences between equity-seeking groups 23 
and the general population, other than a slightly higher proportion for carless households. Carless 24 
households may be more likely to live immediately around subway stations due to their lack of 25 
vehicles in order to maintain their mobility, despite the higher property values associated with 26 
properties around the subway network (41). 27 
 28 
CONCLUSION 29 
  30 
Discussion 31 
The results generally show the value of utilizing a time-expanded graph for vulnerability 32 
analysis. The coefficient of variation results shows that while it may be reasonable to use a static 33 
graph to represent a metro network, this is not appropriate for networks where a large proportion 34 
of ridership is served by surface transit in shared right of way. Low frequencies can significantly 35 
affect the shortest path from one departure time to the next which may make it difficult to 36 
determine if a node or edge is critical to the network, or if the network is vulnerable if the node 37 
or edge is removed. 38 

Most transit agencies rely on bus or streetcar services to feed their rail networks. Even 39 
among rail transit systems, certain rail systems in North America have low frequencies, so a 40 
time-expanded approach should be considered as a method for transit network modelling in 41 
applications of resilience analysis. Our study shows the value of a time-expanded approach that 42 
accurately considers the interactions between low frequency routes and other routes. Beyond 43 
vulnerability studies, this approach for graph networks can be used for other types of graph 44 
analysis beyond vulnerability studies. 45 
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We also verified the impact multiple departure times would have on shortest paths and 1 
accessibility analysis. While we can reasonably assume that the travel time from an origin to a 2 
destination in a metro network would not have much variability, this is not true for bus or 3 
streetcar routes. Even for frequent transit routes, we observed much variation in the results. 4 

In addition, equity-seeking users have different important nodes and edges compared to 5 
the general population, and their distribution within the network is different. They are more 6 
likely to be concentrated along frequent bus routes and are vulnerable to disruption involving 7 
those routes. In the Toronto context, snowstorms are a common cause of bus disruptions, so 8 
equity-seeking users are more likely to have inconsistent service during snowstorms. 9 

With previous vulnerability studies focusing on metro networks and using a non-time-10 
expanded approach, they may not capture comprehensively effects on different groups since 11 
vulnerabilities in the metro network may not be as important to equity-seeking users compared to 12 
the general population. 13 

Finally, we can see that carless households have different patterns than other equity-14 
seeking groups and exhibit patterns much like the general population. This shows the need for 15 
equity analysis to consider each equity group differently rather than as an aggregate.  16 
 17 
Policy Context 18 
For an equitable approach to improving system resiliency, system enhancements should target 19 
vulnerable and equity-seeking groups to increase the number of opportunities they need to 20 
improve their quality of life. This would mean cities should prioritize projects designed to 21 
improve bus system resilience, instead of the subway and downtown streetcar network. As the 22 
analysis shows that equity-seeking groups have more critical transit edges/stations and a higher 23 
entropy, re-prioritization would only bring the system to equality. To achieve equity, cities 24 
should focus on improving the quality of its bus system by making the routes less vulnerable to 25 
disruption, adding service on alternative routes, and adding transit priority on alternative routes 26 
to make them more attractive for pathfinding, much in the same way as LA Metro, which 27 
focused on improvements to the bus network over light rail after a settlement with the LA bus 28 
riders union (47). 29 

In addition, research has shown that equity-seeking riders are the riders most likely to 30 
continue using transit through the COVID-19 pandemic, as they are unable to have other options, 31 
such as ready access to a vehicle, or work from home options (1,48). As equity-seeking riders 32 
will become the bulk of transit ridership in the immediate future after the pandemic, it becomes 33 
important to focus service changes on ways that will serve equity-seeking groups. 34 
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